UCSan Diego

CSE 291: Operating Systems in Datacenters

Amy Ousterhout

Oct. 26, 2023

UCSan Diego

Agenda for Today

- Snap overview
. ghOSt discussion

UCSan Diego

Snhap

Research on CPU Scheduling

theoretical practical
< >
Theory Kernel Bypass Scheduling Improve Linux’s Scheduling Linux’s Scheduler
Prioritization . ZygOS (SOSP ‘17) - Snap (SOSP ‘19) (CFS)
First come first served (FCFS) + Arachne (OSDI ‘18) + ghOSt (SOSP ‘21)
Shortest remaining processing * Shenango (NSDI ‘19) * Syrup (SOSP ‘21)

time (SRPT)
Process sharing (PS)
Etc.

Assumes known task
service times, no
overheads, centralized
queues

Shinjuku (NSDI ‘19)
Caladan (OSDI ‘20)
Scheduling Policies (NSDI 22)

Limitations
Require app changes, don’t Worse performance than
support many policies or kernel-bypass approaches

support multitenancy

Lots of queueing,
slow context switches,
load imbalance,
interference

- “Snap: a Microkernel Approach to Host Networking” [SOSP “19]
. Authors from Google

. Goals:
. High-performance networking (latency and throughput)
.- Ease of deployment different from existing
. Reuse Linux’s threads kernel-bypass approaches

. Widely deployed within Google (as of 2019)
- “Snap is deployed to over half of our fleet of machines and
supports the needs of numerous teams”

Snap’s Approach

- Microkernel-like approach
. Move network stack to userspace
- Communicate with apps via shared memory

C C shared memory reads/writes
S) S SS S i innnnirgy cC
App 1 App2 |--- App 1 App 2 App 1 Snap Process DRI
- - fn call (fn call
(system calls ((< Microkernel
AA Notwork Network 5 et
Kernel Library Library App 2
AN e T _o«
\:\\:\\ /://'Interrupts .
SoftIRQs . _ \ 4
NIC locks NIC Linux =1 NIC
Kernel
Kernel approach Library OS - Shenango, Microkernel approach -

Shinjuku, etc. Snap

https://sosp19.rcs.uwaterloo.ca/slides/marty.pdf

Scheduling the Microkernel

. Which core(s) should Snap run on?

< shared memory reads/writes

D g ininnirey)

Snap Apf Idle

/

ccC Dedicating cores: !
App 1 Snap Process))
. c0 cl cZ c3 c4 cd
<< Microkernel
= Network Module
App 2 £
TTTTTT
A A | Snap Spreads
Linux | ["Nic Spreading engines:
Kernel H H— W

Microkernel approach -
Snap

Snap Compacts

Compacting engines: F

https://sosp19.rcs.uwaterloo.ca/slides/marty.pdf

MicroQuanta Kernel Scheduling Class

- How do you guarantee low-latency handling of network traffic?
- New MicroQuanta kernel scheduling class
. Each MicroQuanta thread can run for up to runtime out of every

period time units
- E.g., Snap threads can run for 0.9 ms out of every 1 ms

- Demonstrates the kinds of scheduling challenges that Google faces

Snap Spreads

==

Spreading engines:

Snap Compacts

Compacting engines: H

UCSan Diego

ghOSt Discussion

