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Agenda for Today

- Snap overview
. ghOSt discussion
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Research on CPU Scheduling

theoretical practical
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Theory Kernel Bypass Scheduling Improve Linux’s Scheduling Linux’s Scheduler
Prioritization . ZygOS (SOSP ‘17) - Snap (SOSP ‘19) (CFS)
First come first served (FCFS) + Arachne (OSDI ‘18) + ghOSt (SOSP ‘21)
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Limitations
Require app changes, don’t Worse performance than
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support multitenancy

Lots of queueing,
slow context switches,
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interference



- “Snap: a Microkernel Approach to Host Networking” [SOSP “19]
. Authors from Google

. Goals:
. High-performance networking (latency and throughput)
.- Ease of deployment different from existing
. Reuse Linux’s threads kernel-bypass approaches

. Widely deployed within Google (as of 2019)
- “Snap is deployed to over half of our fleet of machines and
supports the needs of numerous teams”



Snap’s Approach

- Microkernel-like approach
. Move network stack to userspace
- Communicate with apps via shared memory

C C shared memory reads/writes
S ) S SS S i innnnirgy cC
App 1 App2 |--- App 1 App 2 App 1 Snap Process DRI
- - fn call (fn call
( system calls ( ( < Microkernel
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA Notwork Network 5 et
Kernel Library Library App 2
AN e T _o«
\:\\:\\ /://'Interrupts .
SoftIRQs . _ \ 4
NIC locks NIC Linux =1 NIC
Kernel
Kernel approach Library OS - Shenango, Microkernel approach -

Shinjuku, etc. Snap

https://sosp19.rcs.uwaterloo.ca/slides/marty.pdf



Scheduling the Microkernel

. Which core(s) should Snap run on?
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MicroQuanta Kernel Scheduling Class

- How do you guarantee low-latency handling of network traffic?
- New MicroQuanta kernel scheduling class
. Each MicroQuanta thread can run for up to runtime out of every

period time units
- E.g., Snap threads can run for 0.9 ms out of every 1 ms

- Demonstrates the kinds of scheduling challenges that Google faces
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